Mnist module
Mnist simple model.
MNISTLitModule
#
Bases: LightningModule
Example of a LightningModule
for MNIST classification.
A LightningModule
implements 8 key methods:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|
Docs
https://lightning.ai/docs/pytorch/latest/common/lightning_module.html
Source code in src/models/mnist_module.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
|
__init__(net, optimizer, scheduler, compile_model)
#
Initialize a MNISTLitModule
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
net
|
Module
|
The model to train. |
required |
optimizer
|
Optimizer
|
The optimizer to use for training. |
required |
scheduler
|
lr_scheduler
|
The learning rate scheduler to use for training. |
required |
compile_model
|
bool
|
Whether or not compile the model. |
required |
Source code in src/models/mnist_module.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
|
configure_optimizers()
#
Choose what optimizers and learning-rate schedulers to use in your optimization.
Normally you'd need one. But in the case of GANs or similar you might have multiple.
Examples:
https://lightning.ai/docs/pytorch/latest/common/lightning_module.html#configure-optimizers
Returns:
Type | Description |
---|---|
dict[str, Any]
|
A dict containing the configured optimizers and learning-rate schedulers to be used for training. |
Source code in src/models/mnist_module.py
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
|
forward(x)
#
Perform a forward pass through the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
TensorType[batch, 1, 28, 28]
|
A tensor of shape (batch_size, 1, 28, 28) representing the MNIST images. |
required |
Returns:
Type | Description |
---|---|
TensorType[batch, 10]
|
A tensor of shape (batch_size, 10) representing the logits for each class. |
Source code in src/models/mnist_module.py
89 90 91 92 93 94 95 96 97 98 99 |
|
model_step(x, y)
#
Perform a single model step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
TensorType[batch, 1, 28, 28]
|
Tensor of shape [batch, 1, 28, 28] representing the images. |
required |
y
|
TensorType[batch]
|
Tensor of shape [batch] representing the classes. |
required |
Returns:
Type | Description |
---|---|
A tuple containing: - loss: A tensor of shape (batch_size,) - preds: A tensor of predicted class indices (batch_size,) - targets: A tensor of true class labels (batch_size,) |
Source code in src/models/mnist_module.py
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
|
on_test_epoch_end()
#
Lightning hook that is called when a test epoch ends.
Source code in src/models/mnist_module.py
193 194 195 |
|
on_train_epoch_end()
#
Lightning hook that is called when a training epoch ends.
Source code in src/models/mnist_module.py
147 148 149 |
|
on_train_start()
#
Lightning hook that is called when training begins.
Source code in src/models/mnist_module.py
101 102 103 104 105 106 107 |
|
on_validation_epoch_end()
#
Lightning hook that is called when a validation epoch ends.
Source code in src/models/mnist_module.py
168 169 170 171 172 173 174 |
|
setup(stage)
#
Lightning hook that is called at the beginning of fit (train + validate), validate, test, or predict.
This is a good hook when you need to build models dynamically or adjust something about them. This hook is called on every process when using DDP.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stage
|
str
|
Either |
required |
Source code in src/models/mnist_module.py
197 198 199 200 201 202 203 204 205 206 207 |
|
test_step(batch, batch_idx)
#
Perform a single test step on a batch of data from the test set.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
tuple[Tensor, Tensor]
|
A batch of data (a tuple) containing the input tensor of images and target labels. |
required |
batch_idx
|
int
|
The index of the current batch. |
required |
Source code in src/models/mnist_module.py
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
|
training_step(batch)
#
Perform a single training step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
Any
|
A tuple containing input images and target labels. |
required |
batch_idx
|
The index of the current batch. |
required |
Returns:
Type | Description |
---|---|
TensorType[]
|
A scalar loss tensor. |
Source code in src/models/mnist_module.py
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
|
validation_step(batch, batch_idx)
#
Perform a single validation step on a batch of data from the validation set.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
tuple[Tensor, Tensor]
|
A batch of data (a tuple) containing the input tensor of images and target labels. |
required |
batch_idx
|
int
|
The index of the current batch. |
required |
Source code in src/models/mnist_module.py
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
|